Fabrication of 2D photonic crystals in chalcogenide glass membranes by focused ion beam milling D. Freeman, M. Krolikowska, C. Grillet, S. Madden, and B. Luther-Davies, CUDOS, Laser Physics Centre, Australian National University, Canberra, Australia. We describe the production of chalcogenide glass photonic crystals in films of AMTIR-1 glass. Chalcogenides have sufficiently high refractive index (2.4-3.0) to create a photonic bandgap as well as a high third-order optical nonlinearity (100-1000x silica) and may be useful for all-optical switching [1-2]. 300nm thick AMTIR-1 films were deposited by ultrafast pulsed laser deposition on 50nm thick SiN_x windows prepared by anisotropic chemical etching of nitride coated silicon wafers. The crystal structures were fabricated using a focused ion beam (FIB) to mill away unwanted material from the SiN_x side to create high quality lattices with periods of \approx 500nm. Optical tests showed clear signs of Fano resonances in the angle dependence of the transmission spectra. This technique of fabricating photonic crystals allows arbitrary shapes to be made with <100 nm resolution. - [1] A. Zakery, Y. Ruan, A. V. Rode, M. Samoc, and B. Luther-Davies, *J. Opt. Soc. America B: Opt. Phys.*, **20**, 1844-1852 (2003). - [2] C. Grillet, D. J. Moss, D. Freeman, S. Madden, B. Luther-Davies, and B. J. Eggleton, submitted for *PECS-VI*, (2005).